skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kavanaugh, Maria T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Palmer Deep submarine canyon on the western Antarctic Peninsula hosts permanent penguin breeding rookeries and is characterized by elevated chlorophyll‐a compared to the surrounding continental shelf. Particle residence times within the canyon are shorter than phytoplankton doubling times, which points to the ecosystem's productivity being tied primarily to advection of externally generated biomass into the canyon. This view is supported by recent observational studies showing alignment of attractive flow structures with phytoplankton patches. While residence times are short, they vary in space and are longer than the timescale for submesoscale instabilities with strong vertical motions (an inertial period), allowing for biological sources to be regionally or episodically important. Here we use measurements of ocean surface velocities (from high‐frequency radars) and chlorophyll (from satellites) to calculate the Eulerian, Lagrangian, and horizontal advection terms of the surface chlorophyll budget. The Lagrangian term (including biological sources) is generally comparable in magnitude to advection, but the latter is more important on the canyon's western flank. We then compare joint distributions of relative vorticity and strain conditioned on a particle's net chlorophyll change. In general, parcels experiencing a net increase (decrease) in chlorophyll experience greater cyclonic (anticyclonic) vorticity. Although high‐vorticity features significantly influence parcel motion, trajectories generally align with an estimate of the balanced flow, which is often characterized by a cyclone over the central canyon and eastern flank. Without subsurface data we cannot confirm whether the Lagrangian change truly indicates biological accumulation but we offer some interpretations. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Abstract Marine heatwave (MHW) events have led to acute decreases in primary production and phytoplankton biomass in the surface ocean, particularly at the mid latitudes. In the Northeast Pacific, these anomalous events have occasionally encroached onto the Oregon shelf during the ecologically important summer upwelling season. Increased temperatures reduce the density of offshore waters, and as a MHW is present offshore, coincident downwelling or relaxation may transport warmer waters inshore. As an event persists, new upwelling‐driven blooms may be prevented from extending further offshore. This work focuses on MHWs and coincident events that occurred off Oregon during the summers of 2015–2023. In late summer 2015 and 2019, both documented MHW years, coastal phytoplankton biomass extended on average 6 and 9 km offshore of the shelf break along the Newport Hydrographic Line, respectively. During years not influenced by anomalous warming, coastal biomass extended over 34 km offshore of the shelf break. Reduced biomass also occurs with reduced upwelling transport and nutrient flux during these anomalous warm periods. However, the enhanced front associated with a MHW aids in the compression of phytoplankton closer to shore. Over shorter events, heatwaves propagating far inshore also coincide with reduced chlorophyllaand sea‐surface density at select cross‐shelf locations, further supporting a physical displacement mechanism. Paired with the physiological impacts on communities, heatwave‐reinforced physical confinement of blooms over the inner‐shelf may have a measurable effect on the gravitational flux and alongshore transport of particulate organic carbon. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025
  3. Abstract Ecosystems across the United States are changing in complex and unpredictable ways and analysis of these changes requires coordinated, long‐term research. This paper is a product of a synthesis effort of the U.S. National Science Foundation funded Long‐Term Ecological Research (LTER) network addressing the LTER core research area of “populations and communities.” This analysis revealed that each LTER site had at least one compelling “story” about what their site would look like in 50–100 yr. As the stories were prepared, themes emerged, and the stories were group into papers along five themes: state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the cascading effects theme and includes stories from the Bonanza Creek (boreal), Kellogg Biological Station (agricultural and freshwater), Palmer (Antarctica), and Harvard Forest (temperate forest) LTER sites. We define cascading effects very broadly to include a wide array of unforeseen chains of events that result from a variety of actions or changes in a system. While climate change is having important direct effects on boreal forests, indirect effects mediated by fire activity—severity, size, and return interval—have large cascading effects over the long term. In northeastern temperate forests, legacies of human management and disturbance affect the composition of current forests, which creates a cascade of effects that interact with the climate‐facilitated invasion of an exotic pest. In Antarctica, declining sea ice creates a cascade of effects including declines in Adèlie and increases in Gentoo penguins, changes in phytoplankton, and consequent changes in zooplankton populations. An invasion of an exotic species of lady beetle is likely to have important future effects on pest control and conservation of native species in agricultural landscapes. New studies of zebra mussels, a well‐studied invader, have established links between climate, the heat tolerance of the mussels, and harmful algal blooms. Collectively, these stories highlight the need for long‐term studies to sort out the complexities of different types of ecological cascades. The diversity of sites within the LTER network facilitates the emergence of overarching concepts about trophic interactions as an important driver of ecosystem structure, function, services, and futures. 
    more » « less